Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Alternative splicing involving the thioredoxin reductase module in mammals: a glutaredoxin-containing thioredoxin reductase 1.

Identifieur interne : 000E95 ( Main/Exploration ); précédent : 000E94; suivant : 000E96

Alternative splicing involving the thioredoxin reductase module in mammals: a glutaredoxin-containing thioredoxin reductase 1.

Auteurs : Dan Su [États-Unis] ; Vadim N. Gladyshev

Source :

RBID : pubmed:15379556

Descripteurs français

English descriptors

Abstract

Thioredoxin reductase 1 (TR1) is a key component in the thioredoxin system, one of major redox systems in mammals that links NADPH and thiol-dependent processes. Mammalian TR1 genes are known to be regulated by alternative splicing. In this report, comparative genomic analyses were used to identify and characterize species-specific and common alternative forms of mammalian TR1 genes. Six human TR1 isoforms were identified that were derived from a large number of transcripts and differed in their N-terminal sequences. One isoform resulted from exons located 30-70 kb upstream of the previously identified core TR1 promoter and was composed of a basic TR1 module fused to a glutaredoxin (Grx) domain that contained an unusual active site CTRC sequence. This TR1 form occurred in humans, dogs, and chimpanzees but was inactivated in mice and rats. The CTRC motif in the human enzyme made the N-terminal domain inactive in the Grx assays tested. However, when mutated to CPYC, an active site present in most Grxs, the Grx domain was active. In addition, the presence of the Grx domain interfered with the TR1 activity, distinguishing this enzyme from other proteins with Grx and TR fusions. The data suggest that the fusion of the basic TR1 module and variable N-terminal sequences links the pyridine nucleotide thiol/disulfide oxidoreductase pathway to specific cellular redox functions and may control spatial and temporal expression of TR1 transcripts. Our data also suggest that various N-terminal extensions in mammalian TRs are often expressed in testes.

DOI: 10.1021/bi048478t
PubMed: 15379556


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Alternative splicing involving the thioredoxin reductase module in mammals: a glutaredoxin-containing thioredoxin reductase 1.</title>
<author>
<name sortKey="Su, Dan" sort="Su, Dan" uniqKey="Su D" first="Dan" last="Su">Dan Su</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of Nebraska--Lincoln, Lincoln, Nebraska 68588, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Nebraska--Lincoln, Lincoln, Nebraska 68588</wicri:regionArea>
<wicri:noRegion>Nebraska 68588</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gladyshev, Vadim N" sort="Gladyshev, Vadim N" uniqKey="Gladyshev V" first="Vadim N" last="Gladyshev">Vadim N. Gladyshev</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15379556</idno>
<idno type="pmid">15379556</idno>
<idno type="doi">10.1021/bi048478t</idno>
<idno type="wicri:Area/Main/Corpus">000E49</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E49</idno>
<idno type="wicri:Area/Main/Curation">000E49</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E49</idno>
<idno type="wicri:Area/Main/Exploration">000E49</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Alternative splicing involving the thioredoxin reductase module in mammals: a glutaredoxin-containing thioredoxin reductase 1.</title>
<author>
<name sortKey="Su, Dan" sort="Su, Dan" uniqKey="Su D" first="Dan" last="Su">Dan Su</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of Nebraska--Lincoln, Lincoln, Nebraska 68588, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Nebraska--Lincoln, Lincoln, Nebraska 68588</wicri:regionArea>
<wicri:noRegion>Nebraska 68588</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gladyshev, Vadim N" sort="Gladyshev, Vadim N" uniqKey="Gladyshev V" first="Vadim N" last="Gladyshev">Vadim N. Gladyshev</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alternative Splicing (genetics)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Catalysis (MeSH)</term>
<term>Gene Expression (MeSH)</term>
<term>Genome, Human (MeSH)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Male (MeSH)</term>
<term>Mammals (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Protein Isoforms (chemistry)</term>
<term>Protein Isoforms (genetics)</term>
<term>Protein Isoforms (metabolism)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Testis (metabolism)</term>
<term>Thioredoxin Reductase 1 (MeSH)</term>
<term>Thioredoxin-Disulfide Reductase (chemistry)</term>
<term>Thioredoxin-Disulfide Reductase (genetics)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Catalyse (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Expression des gènes (MeSH)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Génome humain (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Isoformes de protéines (composition chimique)</term>
<term>Isoformes de protéines (génétique)</term>
<term>Isoformes de protéines (métabolisme)</term>
<term>Mammifères (génétique)</term>
<term>Mâle (MeSH)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Testicule (métabolisme)</term>
<term>Thioredoxin reductase 1 (MeSH)</term>
<term>Thioredoxin-disulfide reductase (composition chimique)</term>
<term>Thioredoxin-disulfide reductase (génétique)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
<term>Épissage alternatif (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Protein Isoforms</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Protein Isoforms</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Oxidoreductases</term>
<term>Protein Isoforms</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Glutaredoxins</term>
<term>Thioredoxin Reductase 1</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Isoformes de protéines</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Alternative Splicing</term>
<term>Mammals</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Isoformes de protéines</term>
<term>Mammifères</term>
<term>Thioredoxin-disulfide reductase</term>
<term>Épissage alternatif</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Testis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Isoformes de protéines</term>
<term>Oxidoreductases</term>
<term>Testicule</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Catalysis</term>
<term>Gene Expression</term>
<term>Genome, Human</term>
<term>Humans</term>
<term>Kinetics</term>
<term>Male</term>
<term>Molecular Sequence Data</term>
<term>Oxidation-Reduction</term>
<term>Phylogeny</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Animaux</term>
<term>Catalyse</term>
<term>Cinétique</term>
<term>Données de séquences moléculaires</term>
<term>Expression des gènes</term>
<term>Glutarédoxines</term>
<term>Génome humain</term>
<term>Humains</term>
<term>Mâle</term>
<term>Oxydoréduction</term>
<term>Phylogenèse</term>
<term>Séquence d'acides aminés</term>
<term>Thioredoxin reductase 1</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thioredoxin reductase 1 (TR1) is a key component in the thioredoxin system, one of major redox systems in mammals that links NADPH and thiol-dependent processes. Mammalian TR1 genes are known to be regulated by alternative splicing. In this report, comparative genomic analyses were used to identify and characterize species-specific and common alternative forms of mammalian TR1 genes. Six human TR1 isoforms were identified that were derived from a large number of transcripts and differed in their N-terminal sequences. One isoform resulted from exons located 30-70 kb upstream of the previously identified core TR1 promoter and was composed of a basic TR1 module fused to a glutaredoxin (Grx) domain that contained an unusual active site CTRC sequence. This TR1 form occurred in humans, dogs, and chimpanzees but was inactivated in mice and rats. The CTRC motif in the human enzyme made the N-terminal domain inactive in the Grx assays tested. However, when mutated to CPYC, an active site present in most Grxs, the Grx domain was active. In addition, the presence of the Grx domain interfered with the TR1 activity, distinguishing this enzyme from other proteins with Grx and TR fusions. The data suggest that the fusion of the basic TR1 module and variable N-terminal sequences links the pyridine nucleotide thiol/disulfide oxidoreductase pathway to specific cellular redox functions and may control spatial and temporal expression of TR1 transcripts. Our data also suggest that various N-terminal extensions in mammalian TRs are often expressed in testes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15379556</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>11</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2007</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>43</Volume>
<Issue>38</Issue>
<PubDate>
<Year>2004</Year>
<Month>Sep</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Alternative splicing involving the thioredoxin reductase module in mammals: a glutaredoxin-containing thioredoxin reductase 1.</ArticleTitle>
<Pagination>
<MedlinePgn>12177-88</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Thioredoxin reductase 1 (TR1) is a key component in the thioredoxin system, one of major redox systems in mammals that links NADPH and thiol-dependent processes. Mammalian TR1 genes are known to be regulated by alternative splicing. In this report, comparative genomic analyses were used to identify and characterize species-specific and common alternative forms of mammalian TR1 genes. Six human TR1 isoforms were identified that were derived from a large number of transcripts and differed in their N-terminal sequences. One isoform resulted from exons located 30-70 kb upstream of the previously identified core TR1 promoter and was composed of a basic TR1 module fused to a glutaredoxin (Grx) domain that contained an unusual active site CTRC sequence. This TR1 form occurred in humans, dogs, and chimpanzees but was inactivated in mice and rats. The CTRC motif in the human enzyme made the N-terminal domain inactive in the Grx assays tested. However, when mutated to CPYC, an active site present in most Grxs, the Grx domain was active. In addition, the presence of the Grx domain interfered with the TR1 activity, distinguishing this enzyme from other proteins with Grx and TR fusions. The data suggest that the fusion of the basic TR1 module and variable N-terminal sequences links the pyridine nucleotide thiol/disulfide oxidoreductase pathway to specific cellular redox functions and may control spatial and temporal expression of TR1 transcripts. Our data also suggest that various N-terminal extensions in mammalian TRs are often expressed in testes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Dan</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Nebraska--Lincoln, Lincoln, Nebraska 68588, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gladyshev</LastName>
<ForeName>Vadim N</ForeName>
<Initials>VN</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM065204</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516005">GLRX protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020033">Protein Isoforms</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="C516124">TXNRD1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D054481">Thioredoxin Reductase 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017398" MajorTopicYN="N">Alternative Splicing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015894" MajorTopicYN="N">Genome, Human</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008322" MajorTopicYN="N">Mammals</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020033" MajorTopicYN="N">Protein Isoforms</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013737" MajorTopicYN="N">Testis</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054481" MajorTopicYN="N">Thioredoxin Reductase 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15379556</ArticleId>
<ArticleId IdType="doi">10.1021/bi048478t</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Gladyshev, Vadim N" sort="Gladyshev, Vadim N" uniqKey="Gladyshev V" first="Vadim N" last="Gladyshev">Vadim N. Gladyshev</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Su, Dan" sort="Su, Dan" uniqKey="Su D" first="Dan" last="Su">Dan Su</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E95 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E95 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15379556
   |texte=   Alternative splicing involving the thioredoxin reductase module in mammals: a glutaredoxin-containing thioredoxin reductase 1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15379556" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020